ASANSOL GIRLS' COLLEGE

Department of Mathematics
 Programme Specific Outcome (PSO) and Course Outcome (CO)

Programme Specific Outcome (PSO):

The Programme enables the students
PSO1: to acquire good knowledge and understanding in advanced areas of mathematics.
PSO2: to Formulate and develop mathematical arguments in a logical manner.
PSO3: to prepare themselves for tackling different problems and to understand and correlate them with underlying fundamental mathematical principles.

PSO4: to assimilate the knowledge of mathematics that is applied to any other branch of science in everyday use.

COURSES OUTCOME DEPARTMENT OF MATHEMATICS

| COURSE | UNIT AND TOPIC | UNIT SPECIFIC CO |
| :--- | :--- | :--- | :--- |
| NAME | UNIT-I: Polar representation of complex numbers,
 $n^{\text {th }}$ roots of unity, De Moivre's theorem for rational
 indices and its applications, complex functions and
 their applications | C1: Employ De Moivre's
 theorem in a number of
 applications to solve numerical
 problems |

	UNIT -III: Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Shortest path and Dijkstra's algorithm, Warshall algorithm	C3: Relate the graph theory to the real-world problems
UNIT-I: Algebra	C1: Learn the concepts of AP and GP \quad Series, Permutation \& Combination and	
Set Theory		
C2: Learn the concepts of Matrix		
and determinant		

	UNIT-I: Introduction to Scilab/Octave and its benefits, the general environment, editor, command window, graphics window, Variables assignments, functions, conditional statements, loops, display of array in terms of matrices and vectors, displaying graphs, plots, output data, datafile.	C1: Familiar with open-source mathematical tools
	UNIT-II: Plotting of graphs of function exp(ax + b), log(ax + b), 1/(ax + b), sin(ax + b), cos(ax + b), \|ax + b\|and to illustrate the effect of a and b on the graph. Plotting the graphs of polynomials, the derivative graph, the second derivative graph and comparing them.	C2: Utilize various mathematical tools for displaying graphs, plots, etc.
	UNIT-III: Installation of MikTeX, Basic Syntex, Understanding Latex compilation. Use of templates,, using various Classes and Packages, Latex Preamble,	C3: Get acquainted with LaTex Latex commands and debugging errors, formatting text, symbols, indenting, paragraphs, line-spacing, titles and subtitles.
C4: Prepare resume, question		
paper, project report, etc. using		
LaTeX		

	$\begin{gathered} \text { COURSE } \\ \text { NAME } \\ \hline \end{gathered}$	UNITS AND TOPICS	UNIT SPECIFIC CO
		UNIT-I: Limit, Continuity and Partial Differentiation	This course will enable the students to C1: Learn conceptual differences while advancing from one variable to several variables in calculus
		UNIT-II: Differentiability and Total Differentiation	C2: Visualise the structure of curves and surfaces in plane and space etc
		UNIT-III: Extrema of Functions and Vector Field	C3: Apply multivariable calculus in various optimization problems C4: Learn the applications of multivariable calculus in different fields like Physics, Economics,Medical Sciences, Animation \& Computer Graphics etc
		UNIT-IV: Double and Triple Integrals	C5: Understand inter-relationships amongst the line integral, double and triple integral formulations.
		UNIT-V: Green's, Stoke's and Gauss's Divergence Theorem	C6: Realize the importance of Green, Gauss, and Stokes' theorems in other branches of Mathematics
		UNIT-I: Groups, Finite groups,	C1: Recognize the mathematical objects called groups C2: Link the fundamental concepts of groups and symmetries of geometrical objects
		UNIT-II: Subgroups, Cyclic groups	C3: Explain the significance of the notions of subgroups, and cyclic groups
		UNIT-III: Normal Subgroups and their properties, Quotient group	C4: Explain the significance of the notions of cosets, normal subgroups, and factor groups C5: Analyze the consequences of Lagrange's theorem
		UNIT-IV: Homomorphisms	C6: Learn about structure-preserving maps between groups and their consequences
		UNIT-I: Basic notions of probability, Conditional probability, Mathematical expectation, Characteristic function UNIT-II: Discrete distributions, Continuous distributions	C1: Understand Basix concepts of Probability C2: Understand distributions in the study of random variables
		UNIT-III: Joint cumulative distribution function and its properties, Joint probability density function, Conditional distributions and expectations	C3: Understand distributions in the study of the joint behaviour of two random variables
		UNIT-IV: The Correlation coefficient, Covariance, Calculation of covariance, Linear regression for two variables, The method ofleast squares, Chebyshev's theorem, Strong law of large numbers, Central limit theorem and weak law of large numbers	C4: Establish a formulation helping to predict one variable in terms of the other that is correlationand linear regression C5: Understand central limit theorem, which establish the remarkable fact that the

			particle including the constrained oscillatory motions of particles
		UNIT-IV: Motion in a Plane	C4: Deal with the kinematics and kinetics of the planar motions of a particle including the constrained oscillatory motions of particles
		UNIT-V: Central Orbits	C5: Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions, which were deduced by him long before the mathematical theory given by Newton
		UNIT-I: Vector Spaces	C1: Understand the concepts of vector spaces, subspaces, bases, dimension and their properties
		UNIT-II: Linear Transformations	C2: Relate matrices and linear transformations
		UNIT-III: Further Properties of Linear Transformations	C3: Compute eigen values and eigen vectors of linear transformations
		UNIT-IV: Inner Product Spaces	C4: Learn properties of inner product spaces and determine orthogonality in inner product spaces
		UNIT-V: Adjoint of a Linear Transformation and Canonical Forms	C5: Realise the importance of adjoint of a linear transformation and its canonical form
		UNIT-I: Basics of partial differential equations	C1: Understand problems, methods and techniques of PDE
		UNIT-II: Geometric Interpretation of First order non-linear PDEs and Cauchy's Method of Characteristics, Method of Separation of Variables for solving first order PDEs UNIT-III: Basics of second and higher order PDE	C2: Understand the geometric and physical nature of Partial Differential Equations and classify them accordingly C3: Apply a range of techniques to solve first \& second order partial differential equations
		UNIT-IV: Derivation of Wave Equation and Heat Equation in One-dimension. Method of separation of variables	C4: Model physical phenomena using partial differential equations such as the heat and waveequations
		UNIT-5: Calculus of Variations-Variational Problems with Fixed Boundaries	C5: Understand problems, methods and techniques of calculus of variations
		UNIT-6: Calculus of Variations-Variational Problems with Moving Boundaries	C6: Understand Variational Problems with Moving Boundaries
		UNIT-I: Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bipartite graphs isomorphism of graphs	C1: Appreciate the definition and basics of graphs along with types and their examples
		UNIT-II: Eulerian circuits, Eulerian graph, semiEulerian graph and theorems, Hamiltonian cycles and theorems. Representation of a graph by a matrix, the adjacency matrix, incidence matrix, weighted graph	C2: Understand the Eulerian circuits, Eulerian graphs, Hamiltonian cycles, and representation of a graph by matrix

	UNIT-III: Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Dijkstra's algorithm, Warshall algorithm	C3: Relate the graph theory to the real- world problems
UNIT-I: Theory of Sets	C1: Learn basic facts about the cardinality of a set	
	UNIT-II: Concepts in Metric Spaces	C2: Learn abstract formulation of the notion "distance" on an arbitrary set and learn how known concepts like continuity, convergence of sequences etc behave in such abstract setting

		UNIT-I: Fourier Series	C1: Learn Fourier series, Bessel's inequality, term by term differentiation and integrationof Fourier series
		UNIT-II: Fourier Transforms	C2: Know about Fourier Transform and its relation with Fourier Series and the sufficient conditions for its existence
		UNIT-III: Laplace Transforms	C3: Laplace Transform and its relation with Fourier Transform and the sufficient conditions for its existence
		UNIT-IV: Applications of Integral Transforms and Fourier Analysis	C4: Familiarise with the properties of Fourier and Laplace Transforms C5: Learn to apply Fourier and Laplace Transforms to well-known functions C6: Learn to find inverse Laplace Transform and inverse Fourier Transform C7: To be able to solve real world initial value, boundary value and initial-boundary problems using Integral Transforms or Fourier Series
		UNIT-I: Introduction to linear programming problem. Theory of simplex method, graphical solution	C1: Analyze and solve linear programming models of real life situations C2: Provide graphical solution of linear programming problems with two variables, and illustratethe concept of convex set and extreme points
		UNIT-II: Duality, formulation of the dual problem, primal-dual relationships, economic interpretation of the dual, Dual Simplex method	C3: Solve linear programming problems using dual simplex method
		UNIT-III: Transportation problem and its mathematical formulation, Travelling salesman problem	C4: Learn techniques to solve transportation and assignment problems
		UNIT-IV: Game theory	C5: Solve two-person zero sum game problems
		UNIT-I: Complex Plane and functions	C1: Visualize complex numbers as points of \mathbb{R}^{2} and stereographic projection of complex plane on the Riemann sphere
		UNIT-II: Analytic functions and CauchyRiemann equations	C2: Understand the significance of differentiability and analyticity of complex functions leading to the Cauchy-Riemann equations
		UNIT-III: Power Series	C3: Understand the convergence, term by term integration and differentiation of a power series
		UNIT-IV: Conformal and Bilinear Transformations	C4: Understand basic properties of Conformal and Bilinear Transformations

| | UNIT-I: Mathematical Biology and the
 modelling process | C1: Understand basic notions of Bio-
 Mathematics |
| :--- | :--- | :--- | :--- | :--- |
| | UNIT-II: Activator-Inhibitor system, Insect
 Outbreak Model, Qualitative analysis of
 continuous models, bifurcations and limit
 cycles with examples in the context of
 biological scenario Spatial Models | C2: Grasp the idea of various bio-
 mathematical models and techniques
 which will help them to tacklephysical
 world problems |
| UNIT-III: Discrete Models, Case Studies: | C3: Understand different discrete
 Optimal Exploitation models, Models in
 Genetics, Stage Structure Models, Age
 Structure Models | models |

GENERIC COURSES OUTCOME DEPARTMENT OF MATHEMATICS

	COURSE	UNIT AND TOPIC	UNIT SPECIFIC CO
NAME			

UNIT-IV: Sequences and series of functions, Pointwise and uniform convergence. Mn-test, M-test, Statementsof the results about uniform convergence and integrability and differentiability of functions, Power series and radius of convergence.

C4: Understand about sequences and series of functions.

PROGRAM COURSES OUTCOME DEPARTMENT OF MATHEMATICS

	COURSE	UNIT AND TOPIC	UNIT SPECIFIC CO
NAME			

of abelian and non-abelian groups, the group Zn of

integers under addition modulo n, and the group U(n) of

units under multiplication modulo n. Cyclic groups from

number systems, complex roots of unity, circle group,

Normal subgroups: their definition, examples, and

characterizations, Quotient groups. Divisor of zeros,

Rings, Integral domain, fields.\end{array} \quad $$
\begin{array}{l}\text { C1: Understand the concepts of } \\
\text { different types of groups, rings, and } \\
\text { field. }\end{array}
$$\right]\)

		UNIT-III: Difference and Symmetric difference of two sets. Set identities, generalized union and intersections. Relation: Product set. Composition of relations, Types of relations, Partitions, Equivalence Relations with example of congruence modulo relation. Partial ordering relations, n - ary relations	C3: Understand about various operations and relations related to sets.
	$\begin{gathered} \text { L0ヶJWLLUSOSG } \\ \text { SISATVNV TVGZ OL NOILOのGOyLNI } \end{gathered}$	UNIT-I: Finite and infinite sets, examples of countable and uncountable sets. Real line, bounded sets, suprema and infima, completeness property of R, Archimedean property of R, intervals. Concept of cluster points and statement of Bolzano-Weierstrass theorem.	C1: Understand about sets in R, sequences, series of functions and infinite series.
		UNIT-II: Real Sequence, Bounded sequence, Cauchy convergence criterion for sequences. Cauchy's theorem on limits, order preservation and squeeze theorem, monotone sequences and their convergence.	C2: Understand about sequence of real numbers.
		UNIT-III: Infinite series. Cauchy convergence criterion for series, positive term series, geometric series, comparison test, convergence of p-series, Root test, Ratio test, alternating series, Leibnitz's test (Tests of Convergence without proof). Definition and examples of absolute and conditional convergence.	C3: Understand about series of real numbers.
		UNIT-IV: Sequences and series of functions, Pointwise and uniform convergence. Mn-test, M-test, Statements of the results about uniform convergence and integrability and differentiability of functions, Power series and radius of convergence.	C4: Understand about sequences and series of functions.
		UNIT-I: Definition, examples, and basic properties of ordered sets, maps between ordered sets, duality principle, maximal and minimal elements, lattices as ordered sets, complete lattices, lattices as algebraic structures, sublattices, products and homomorphisms. Definition, examples and properties of modular and distributive lattices, Boolean algebras UNIT-II: Boolean polynomials, minimal forms of Boolean polynomials, Quinn-McCluskey method, Karnaugh diagrams, switching circuits and minimization of switching circuits using Boolean algebra	C1: Understand Boolean algebra and Boolean functions, logic gates, switching circuitsand their applications. C2: Apply a number of proof techniques to theorems in language design.
		UNIT-I: Rectilinear motion, Motion under repulsive force (i) proportional to distance (ii) inversely proportional to square of the distance, Motion under attractive force inversely proportional to square of the distance, Motion under gravitational acceleration.	C1: Understand motion in a straight line.
		UNIT-II: Simple harmonic motion, Damped oscillation, Forced and Damped oscillation,Elastic string and spiral string, Hook's law, Particle attached to a horizontal elastic string, Particle attached to a vertical elastic string.	C2: Understand SHM
		UNIT-III: Projectiles motion in vacuum and in a medium with resistance varying linearly as velocity. Motion under forces varying as distance from a fixed point.	C3: Understand motion in a resisting medium.

	UNIT-IV: Central orbit. Kepler's laws of motion. Motion under inverse square law.	C4: Understand Kepler's law of motion and central orbit.		
	UNIT-I: Division algorithm, Lame'e theorem, Linear Diophantine equation, fundamental theorem of arithmetic, prime counting function, statement of prime number theorem, Goldbach conjecture, binary and decimal representation of integers, linear congruences, complete set of residues	C1: Learn Lame's theorem, linear Diophantine equation, congruences.		UNIT-II: Number theoretic functions, sum and
:---				
number of divisors, totally multiplicative functions,				
definition and properties of the Dirichlet product, the				
Mobious inversion formula, the greatest integer				
function, Euler's phi-function	\quad	C2: Learn Goldbach conjecture,		
:---				
Euler's phi-function.				

