ASANSOL GIRLS' COLLEGE

Department of Mathematics

Programme Specific Outcome (PSO) and Course Outcome (CO)

Programme Specific Outcome (PSO):

The Programme enables the students

PSO1: to acquire good knowledge and understanding in advanced areas of mathematics.

PSO2: to Formulate and develop mathematical arguments in a logical manner.

PSO3: to prepare themselves for tackling different problems and to understand and correlate them with underlying fundamental mathematical principles.

PSO4: to assimilate the knowledge of mathematics that is applied to any other branch of science in everyday use.

COURSES OUTCOME DEPARTMENT OF MATHEMATICS

	COURSE	UNIT AND TOPIC	UNIT SPECIFIC CO
	NAME	UNIT-I: Polar representation of complex numbers.	C1: Employ De Moivre's
		n^{th} roots of unity, De Moivre's theorem for rational	theorem in a number of
		indices and its applications, complex functions and their applications	applications to solve numerical problems
	RY	UNIT-II: Theory of equations: Relation between	C2: Understand the importance
	1ET.	Descartes rule of signs. Cubic and biquadratic	of roots of real and complex polynomials and learn various
	GEON	equations. Reciprocal equation, separation of the roots of equations, Strum's theorem	methods of obtaining roots
	TICAL	UNIT-III : Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality, Weierstrass inequality	C3: Understand different types of inequality
	ALY	UNIT-IV: Hyperbolic functions, higher order	C4: Understand basics of
	JR 4N∕	derivatives, Successive differentiation, Leibnitz rule	calculus
	I O I	and its applications to problems of type $(ax + b)^n$; $e^{ax} \sin(bx + c)$; $e^{ax} \cos(bx + c)$; $\log_e(ax + c)$	
	ID N S Al	b)etc. L'Hospital's rule. concavity and inflection	
	L AN JLU MTM	points, envelopes, asymptotes, Maxima and Minima, Curvature	
Ŀ	JOR LCU SSCI	UNIT-V: Reduction formulae, derivations and	C5: Understand reduction
TER	MA CA E	illustrations of reduction formulae for the integration	formulae and different techniques
1ES ⁷	RA,	$sin^n x, cos^n x, tan^n x, sec^n x, (log x)^n, sinn x, sinm x,$	or calculus
SEM	IEB	etc. parametric equations, parametrizing a curve, arc	
	ALC	length, arc length of parametric curves, area of surface of revolution	
	AL.	UNIT-VI : Reflection properties of conics, translation	C6: Understand basics of 2D
	SIC	and rotation of axes and second degree equations,	geometry
	AS	Tangent, Normal, pole, polar, Diameter and conjugate	
	CI	diameters, Asymptotes. Polar equations of conics	
		UNIT-VII : Planes, Straight lines in 3D, Spheres. Cylindrical surfaces. Central conicoids, paraboloids.	C7: Understand basics of 3D geometry
		plane sections of conicoids, Generating lines,	Beeniewy
		classification of quadrics, Tangent plane, Normal	C1: Appreciate the definition and
	II I	of graphs, pseudo graphs, complete graphs, bipartite	basics of graphs along with types
	EOR E10	graphs isomorphism of graphs	and their examples
	THI	Eulerian graph, semi-Eulerian graph and theorems	C2: Understand the Eulerian circuits, Eulerian graphs
	HAN LMC	Hamiltonian cycles and theorems. Representation of	Hamiltonian cycles,
	GRA BSC	a graph by a matrix, the adjacency matrix, incidence	representation of a graph by
		Subgraphs	

		UNIT -III: Travelling salesman's problem, shortest	C3: Relate the graph theory to the
		path, Tree and their properties, spanning tree, Shortest	real-world problems
		path and Dijkstra's algorithm, Warshall algorithm	
		UNIT-I: Algebra	C1: Learn the concepts of AP and
	S		GP Series, logarithm,
	S		Permutation & Combination and
	IES 113		Set Theory
	SIN SIN		C2: Learn the concepts of Matrix
	M HI		and determinant
	H	UNIT-II: Differential and Integral Calculus	C3: Understand the concepts of
	~		limit, continuity, differentiability
			and integration of functions
	\sim	UNIT-I: Systems of linear equations, row reduction	CI: Recognize consistent and
	LU LU	and echelon forms, vector equations, matrices and	inconsistent systems of linear
	E E	matrix operations, inverse of a matrix, rank of a	equations by the row echelon
	T	matrix, determinants and their properties, Cramer's rule, the matrix equation $4x$ =h solution sets of linear	form of the augmented matrix,
	C₽	systems and their geometrical interpretation	using a rank.
	JR	applications of linear systems linear independence	C2: Find eigenvalues and
) L	eigenvalues and eigenvectors of a matrix	corresponding eigenvectors for a
	'EC		square matrix.
		UNIT-II: Differential equations and mathematical	C3: Understand the genesis of
	R R	models. General, particular, explicit, implicit and	ordinary differential equations
	SA	singular solutions of a differential equation, linear	C4: Understand the Various
	NC	factors and transformations, special integrating	solutions of solvable first order
	ĬŢ	trajectories equations of first order but not first	differential equations and linear
	JR UA	degree Clairaut's form Extraneous loci	differential equations of higher
H	EQ IN		order
L.	M T M	UNIT-III: General solution of homogeneous	C5: Know how to solve linear
STI		equation of second order, principle of super position	homogeneous and non-
AE	EN	for homogeneous equation, Wronskian, method of	homogeneous equations of higher
SEN	OR ER SCI	variation of parameters. Reduction of order of ODE	order with constant coefficients
•1	LAJ FF B	and solution	
	N IO	UNIT-IV: Systems of linear differential equations,	C6: Understand the system of
	RY	types of linear systems, differential operators, an	linear differential equations and
	NA	operator method for linear systems with constant	the solution techniques
	DII	coefficients, Matrix Method, Solution distinuitaneous equations of the form $dx/P = dx/Q = dz/R$. Pfaffian	
	OR	Differential Equation $Pdx+Ody+Rdz = 0$ Necessary	
	T, O	and sufficient condition for existence of integrals of	
	RA	the above (proof not required). Total differential	
	EB	equation	
	Ð	UNIT-V: Triple product, introduction to vector	C7: Understand the theory and
	A	functions, operations with vector-valued functions,	applications of vector analysis
	AR	limits and continuity of vector functions, vector	
	ZE	equations and its simple applications, differentiation	
	LI	and integration of vector functions. Differential	
		operators: gradient, divergence, curl	

JENCE J	UNIT-I: Introduction to Scilab/Octave and its benefits, the general environment, editor, command window, graphics window, Variables assignments, functions, conditional statements, loops, display of array in terms of matrices and vectors, displaying graphs, plots, output data, datafile.	C1: Familiar with open-source mathematical tools
EMATICAL SC SCMTMMD20	UNIT-II: Plotting of graphs of function $exp(ax + b)$, $log(ax + b)$, $1/(ax + b)$, $sin(ax + b)$, $cos(ax + b)$, $ ax + b $ and to illustrate the effect of a and b on the graph. Plotting the graphs of polynomials, the derivative graph, the second derivative graph and comparing them.	C2: Utilize various mathematical tools for displaying graphs, plots, etc.
MATH	UNIT-III: Installation of MikTeX, Basic Syntex, Understanding Latex compilation. Use of templates, using various Classes and Packages, Latex Preamble, Latex commands and debugging errors, formatting text, symbols, indenting, paragraphs, line-spacing, titles and subtitles.	C3: Get acquainted with LaTex softwareC4: Prepare resume, question paper, project report, etc. using LaTeX
	UNIT-I: Complex numbers, Algebra of complex numbers, The modulus and the conjugate of a Complex number, Argand plane and polar representation, Cube roots of unity, De Moiver's theorem (statement only) and its elementary applications.	C1: Understand the concept of complex number and its algebra
	UNIT-II: Sections of a Cone, Circle, Parabola,	C2: Understand the concept of
	Ellipse, Hyperbola and basic information of these conic sections, general second degree equation and its Classification.	two-dimension
CAL SCIENCE VIMD201	 Ellipse, Hyperbola and basic information of these conic sections, general second degree equation and its Classification. UNIT-III: Basic definitions, Formation, General, particular and singular solution, solution of first order and first degree differential equations, integrating factors, homogeneous, reducible to homogeneous, exact, linear differential equations. 	two-dimension C3: Understand the solution methods of differential equations
MATHEMATICAL SCIENCE BSCMTMMD201	 Ellipse, Hyperbola and basic information of these conic sections, general second degree equation and its Classification. UNIT-III: Basic definitions, Formation, General, particular and singular solution, solution of first order and first degree differential equations, integrating factors, homogeneous, reducible to homogeneous, exact, linear differential equations. UNIT-IV: Vectors and linear combinations, Vectors in three dimensions, Dot products, Lengths and unit vectors, The angle between two vectors, Cross product of vectors, Dependent and independent vectors, collinear and co-planar vectors. 	two-dimension C3: Understand the solution methods of differential equations C4: Learn the concepts of vector algebra
MATHEMATICAL SCIENCE BSCMTMMD201	 Ellipse, Hyperbola and basic information of these conic sections, general second degree equation and its Classification. UNIT-III: Basic definitions, Formation, General, particular and singular solution, solution of first order and first degree differential equations, integrating factors, homogeneous, reducible to homogeneous, exact, linear differential equations. UNIT-IV: Vectors and linear combinations, Vectors in three dimensions, Dot products, Lengths and unit vectors, The angle between two vectors, Cross product of vectors, Dependent and independent vectors, collinear and co-planar vectors. UNIT-V: Events, Types of events, Sample space, Classical and axiomatic definition of probability, Total and compound probability - theories with examples, Conditional probability, Statistical independence, Baye's theorem, Random variables discrete and continuous probability, Sampling, 	two-dimension C3: Understand the solution methods of differential equations C4: Learn the concepts of vector algebra C5: Understand the basic concepts on probability and statistics

	COURSE NAME	UNITS AND TOPICS	UNIT SPECIFIC CO
	IVARIABLE CALCULUS (BSCHMTMC301)	UNIT-I : Limit, Continuity and Partial Differentiation	This course will enable the students to C1 : Learn conceptual differences while advancing from one variable to several variables in calculus
		UNIT-II: Differentiability and Total Differentiation	C2 : Visualise the structure of curves and surfaces in plane and space etc
		UNIT-III : Extrema of Functions and Vector Field	C3: Apply multivariable calculus in various optimization problems C4: Learn the applications of multivariable calculus in different fields like Physics, Economics, Medical Sciences, Animation & Computer Graphics etc
	MULT	UNIT-IV : Double and Triple Integrals	C5: Understand inter-relationships amongst the line integral, double and triple integral formulations.
		UNIT-V: Green's, Stoke's and Gauss's Divergence Theorem	C6 : Realize the importance of Green, Gauss, and Stokes' theorems in other branches of Mathematics
TER III	UNIT-I: Groups, F UNIT-I: Groups, F UNIT-II: Subgrou UNIT-II: Norm properties, Quotient	UNIT-I: Groups, Finite groups,	C1: Recognize the mathematical objects called groups C2: Link the fundamental concepts of groups and symmetries of geometrical objects
SEMEST		UNIT-II: Subgroups, Cyclic groups	C3: Explain the significance of the notions of subgroups, and cyclic groups
		UNIT-III : Normal Subgroups and their properties, Quotient group	C4: Explain the significance of the notions of cosets, normal subgroups, and factor groups C5: Analyze the consequences of Lagrange's theorem
		UNIT-IV: Homomorphisms	C6: Learn about structure-preserving maps between groups and their consequences
	TICS	UNIT-I : Basic notions of probability, Conditional probability, Mathematical expectation, Characteristic function	C1: Understand Basix concepts of Probability
	LATIS ⁷ 33)	UNIT-II : Discrete distributions, Continuous distributions	C2 : Understand distributions in the study of random variables
	Y AND ST HMTMC30	UNIT-III : Joint cumulative distribution function and its properties, Joint probability density function, Conditional distributions and expectations	C3: Understand distributions in the study of the joint behaviour of two random variables
	PROBABILT (BSC	UNIT-IV: The Correlation coefficient, Covariance, Calculation of covariance, Linear regression for two variables, The method ofleast squares, Chebyshev's theorem, Strong law of large numbers, Centrallimit theorem and weak law of large numbers	C4: Establish a formulation helping to predict one variable in terms of the other that is correlationand linear regression C5: Understand central limit theorem, which establish the remarkable fact that the

			empirical frequencies of so many natural populations exhibit a bell shaped curve
		UNIT-I : First-order languages, Terms of language, Formulas of language, First order theory	C1: Understand basic notions of logic
	IC	UNIT-II : Structures of first-order languages, Truth in a structure, Model of a theory, Embeddings and isomorphism	C2: Understand structures of first order languages, embeddings, and isomorphisms
	ATICAL LOG MTMSE301)	UNIT-III: Introduction, propositions, truth table, negation, conjunction and disjunction. Propositional equivalence, Predicates and quantifiers	C3: Understand about truth table, different propositions, predicates and quantifiers, basic Theorems like the Compactness Theorem, Meta Theorem and Post Tautology Theorem
	MATHEM/ (BSCHI	UNIT-IV: Proof in first-order logic, Meta theorems in first-order logic, Some meta theorem in arithmetic, Consistency and completeness	C4: Understand the syntax of first- order logic and semantics of first-order languages
		UNIT-V: Completeness theorem, Interpretation in a theory, Extension by definitions, Compactness theorem and applications, Complete theories, Applications in algebra	C5: Grasp the concept of completeness interpretations and their applications with special stress on applications in Algebra
		UNIT-I: Basics of computer programming language	C1: Acquire knowledge of different
	JAGE IN C 2)	UNIT-II: Constants, Variables, Operation and Expressions	C2: Understand basic structure, characters, keywords, identifiers, data types, operators, expressions, etc. in C language
	MING LANG CHMTMSE3(UNIT-III: Decision Making and Branching, Control Statements	C3: Write flow chart and corresponding C-program for solving problems requiring decision making, branching, looping and other control statements
	RAM (BS	UNIT-IV: Arrays and Functions, Two Dimensional Arrays	C4: Learn to implement in C programming
	ROG	UNIT-V: Functions, Function Calls,	C5 : Learn to implement functions in C programming
	<u>4</u>	UNIT-VI: Structures, Unions and Pointers	C6 : Familiarise with the concepts of structure union and pointers
		UNIT-I: Statics	C1: Understand necessary conditions for the equilibrium of particles acted
R IV	vICS AC401		upon by various forces and learn the principle of virtual work for a system of coplanar forces acting on a rigid body
SEMESTE	MECHAN BSCHMTN	UNIT-II: Centres of Gravity and Common Catenary	C2: Determine the centre of gravity of some materialistic systems and discuss the equilibrium of a uniform cable hanging freely under its own weight
		UNIT-III: Rectilinear Motion	C3: Deal with the kinematics and kinetics of the rectilinear motions of a

			particle including the constrained
			oscillatory motions of particles
		UNIT-IV: Motion in a Plane	C4: Deal with the kinematics and
			kinetics of the planar motions of a
			particle including the constrained
			oscillatory motions of particles
		UNIT-V: Central Orbits	C5: Learn that a particle moving under
			a central force describes a plane curve
			and know the Kepler's laws of the
			planetary motions, which were
			deduced by him long before the
			mathematical theory given by Newton
		UNIT-I: Vector Spaces	C1: Understand the concepts of vector
			spaces, subspaces, bases, dimension
			and their properties
	RR∕ 02	UNIT-II: Linear Transformations	C2: Relate matrices and linear
	EB C4(transformations
	MG	UNIT-III: Further Properties of Linear	C3: Compute eigen values and eigen
	A] MT	Transformations	vectors of linear transformations
	AR	UNIT-IV: Inner Product Spaces	C4: Learn properties of inner product
	NE. SC		spaces and determine orthogonality in
	B		inner product spaces
		UNIT-V: Adjoint of a Linear Transformation	C5: Realise the importance of adjoint
		and Canonical Forms	of a linear transformation and its
			canonical form
		UNIT-I : Basics of partial differential equations	C1: Understand problems, methods
			and techniques of PDE
	LENTIAL CALCULUS ONS 2403)	UNIT-II: Geometric Interpretation of First order	C2: Understand the geometric and
		non-linear PDEs and Cauchy's Method of	physical nature of Partial Differential
		Characteristics, Method of Separation of	Equations and classify them
		Variables for solving first order PDEs	accordingly
		UNIT-III: Basics of second and higher order PDE	C3: Apply a range of techniques to
	EF D (TI(M(solve first & second order partial
	ANN ANN ALA	UNIT W. Device the of Wheel Exception and	differential equations
	S / S / AF	UNIT-IV: Derivation of wave Equation and	C4: Model physical phenomena using
	AL DN F V SC	Heat Equation in One-dimension. Method of	partial differential equations such as the
	TI(0 B	UNIT 5. Coloubus of Variations Variational	C5. Understand machines matheda
	AF UA	UNIT-5: Calculus of variations-variational	C5: Understand problems, methods
	F	UNIT & Calculus of Variations Variational	Ch. Understand Variational Broblems
	H	Drohlems with Moving Dounderies	Co. Olderstand Variational Floblenis
		UNIT Is Definition asymptotic and basic properties	C1: Appreciate the definition and
	01	of graphs pseudo graphs complete graphs	CI. Appreciate the definition and basics of graphs along with types and
	OF E4	binartite graphs isomorphism of graphs	their examples
	HE MS	UNIT II: Eulerian circuits Eulerian granh comi	C2 : Understand the Eulerian aircuite
	I T ITI	Fulerian graph and theorems Hamiltonian	Eulerian graphs Hamiltonian evalue
	PF HIN	cycles and theorems. Penrecentation of a graph	and representation of a graph by
	RA SCJ	by a matrix the adjacency matrix incidence	matrix
	G B(matrix, weighted graph	
		maura, weighted graph	

		UNIT-III: Travelling salesman's problem, shortest	C3: Relate the graph theory to the real-
		path, Tree and their properties, spanning tree,	world problems
		Dijkstra's algorithm, Warshall algorithm	
	70	UNIT-I: Theory of Sets	C1: Learn basic facts about the
	GE		cardinality of a set
	AC	UNIT-II: Concepts in Metric Spaces	C2: Learn abstract formulation of the
) SF		notion "distance" on an arbitrary set
	IC 01		and learn how known concepts like
	IR [CS		continuity, convergence of sequences
	IN		etc behave in such abstract setting
	M_M	UNIT-III: Complete Metric Spaces and	C3: Understand different properties of
	CH	Continuous Functions	Complete Metric Spaces and
	OF		Continuous Functions
	(1) (1)	UNIT-IV: Compactness	C4: Understand different properties of
	E	•	complete Metric Spaces
	E	UNIT-V: Connectedness	C5: Understand different properties of
	V		Connected Metric Spaces
		UNIT-I: Automorphism, inner automorphism,	C1: Understand the automorphism,
		Characteristic subgroups, Applications of	inner automorphism
		group actions. GeneralizedCayley's theorem.	-
		Index theorem	
		UNIT-II: Groups acting on themselves by	C2: The fundamental concepts of
5		conjugation, class equation and consequences,	GroupActions and their applications
		conjugacy in S _n , p-groups, Sylow's theorems	
EF		and consequences, Cauchy's theorem, Finite	
LS		Simple Groups, Simplicity of An for $n \ge 5$,	
ME		non-simplicity tests	
SE		UNIT-III: Definition, examples and elementary	C3: Be acquainted with the basic
	R A	properties of rings, Commutative rings,	concepts of Ring Theory such as the
	EB]	Integral domain, Division rings and fields,	concepts of ideals, quotient rings,
	CGF CSO	Prime, principal and maximal ideals, Relation	Integral domains and Fields
	AI	between integral domain and field	
	D T	UNIT-IV: Euclidean domain, principal ideal	C4: Understand basic properties of
	H	domain, and unique factorization domain	Euclidean domain, principal ideal
	ANSC		domain, and unique factorization
	B B		domain
	AI	UNIT-V: Extension of a field, Algebraic element	C5: Know in detail about Polynomial
		of a field, Algebraic and transcendental	Rings, Fundamental properties of
		numbers, Perfect field, Classification of finite	Finite Field extensions and classificatio
		fields	n of Finite Fields

NUMERATION inequality, term by term differentiation and integration of Fourier series UNIT-II: Fourier Transforms C2: Know about Fourier Transform and its relation with Fourier Series and the sufficient conditions for its existence UNIT-III: Laplace Transforms C3: Laplace Transform and its relation with Fourier Transform and the sufficient conditions for its existence UNIT-IV: Applications of Integral Transforms C4: Familiarise with the properties of the properti
High of the sufficient conditions for its existence UNIT-II: Fourier Transforms C2: Know about Fourier Transform and its relation with Fourier Series and the sufficient conditions for its existence UNIT-III: Laplace Transforms C3: Laplace Transform and its relation with Fourier Transform and the sufficient conditions for its existence UNIT-IV: Applications of Integral Transforms C4: Familiarise with the properties of
UNIT-II: Fourier Transforms C2: Know about Fourier Transform and its relation with Fourier Series and the sufficient conditions for its existence UNIT-III: Laplace Transforms C3: Laplace Transform and its relation with Fourier Transform and its relation with Fourier Transform and the sufficient conditions for its existence UNIT-IV: Applications of Integral Transforms C4: Familiarise with the properties of
NOUL CONTRIBUTION and its relation with Fourier Series and the sufficient conditions for its existence UNIT-III: Laplace Transforms C3: Laplace Transform and its relation with Fourier Transform and the sufficient conditions for its existence UNIT-IV: Applications of Integral Transforms C4: Familiarise with the properties of
OP OF
Image: Constraint of the sufficient conditions of the sufficient conditions for its existence existence Image: Constraint of the sufficient conditions for its existence C3: Laplace Transform and its relation with Fourier Transform and the sufficient conditions for its existence Image: Constraint of the sufficient conditions for its existence C4: Familiarise with the properties of the sufficient conditions for its existence
UNIT-III: Laplace Transforms C3: Laplace Transform and its relation with Fourier Transform and the sufficient conditions for its existence UNIT-IV: Applications of Integral Transforms C4: Familiarise with the properties of
Signature With Fourier Transform and the sufficient conditions for its existence UNIT-IV: Applications of Integral Transforms C4: Familiarise with the properties of
VID: NoteSufficient conditions for its existenceUNIT-IV: Applications of Integral TransformsC4: Familiarise with the properties of
UNIT-IV: Applications of Integral Transforms C4: Familiarise with the properties of
2 Z Z and Fourier Analysis Fourier and Laplace Transforms
C5: Learn to apply Fourier and Laplace
Transforms to well-known functions
C6 : Learn to find inverse Laplace
Z Transform and inverse Fourier
Transform
C7 : To be able to solve real world
initial value, boundary value and
initial-boundary problems using
Integral Transforms or Fourier Series
UNIT-I: Introduction to linear programming C1: Analyze and solve linear
problem. Theory of simplex method, graphical programming models of real life
solution situations
C2 : Provide graphical solution of linear
programming problems with two
variables, and illustrate the concept of
convex set and extreme points
$\mathbf{C}_{\mathbf{C}}$ UNIT-II: Duality, formulation of the dual $\mathbf{C}_{\mathbf{C}}$: Solve linear programming
Fight problem, primal-dual relationships, economic problems using dual simplex method
\mathcal{H} \mathcal{H} \mathcal{H} interpretation of the dual, Dual Simplex
C E UNIT-III: Transportation problem and its C4: Learn techniques to solve
mathematical formulation, Travelling salesman transportation and assignment
Z UNIT W. Come theory C5. Solve two corrections
UNIT-IV: Game theory C5: Solve two-person zero sum game
UNIT I: Complex Plane and functions C1. Visualize complex symplex
$C1$: Visualize complex numbers as nointee of \mathbb{D}^2 and stargegraphic
relation of a complex plane on the
Riemann sphere
EXEMPTIE INITIL: Analytic functions and Cauchy C2: Understand the significance of
Riemann equations
E complex functions leading to the
Cauchy-Riemann equations
UNIT-III: Power Series C3: Understand the convergence, term
by term integration and differentiation
of a power series
UNIT-IV: Conformal and Bilinear Transformations C4 : Understand basic properties of
Conformal and Bilinear Transformations

		UNIT-V: Cauchy's theorem	C5: Understand basic properties of Cauchy's theorem
		UNIT-VI : Singularities and Contour integration	C6 : Learn Taylor and Laurent series expansions of analytic functions, classify the nature of singularity, poles and residues and application of Cauchy Residue theorem
	В	UNIT-I: Algorithms, Convergence, Errors: Relative, Absolute, Round off, Truncation	C1 : Understand the problem solving skills using numerical methods
	UMERICAL LA 02	UNIT-II: Transcendental and Polynomial equations: Bisection method, Newton's method, Secant method, Regula-falsi method, fixed point iteration, Newton-Raphson method. Error and Rate of convergence of these methods	C2: To solve the equations which are impossible to solve analytically
	AETHODS & N BSCHMTMC6	UNIT-III: System of linear algebraic equations: Gaussian Elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel method and their convergence analysis, LU Decomposition	C3: Handle large system of equations, non-linearity and and that are often impossible to solve analytically
	CALM	UNIT-IV: Interpolation, Numerical differentiation	C4: Understand basic notions of interpolation
	NUMERIC	UNIT-V: Numerical Integration, The algebraic eigen value problem	C5: To solve integration and eigen value problem which are impossible to solve analytically
		UNIT-VI: Numerical solution of Ordinary Differential Equations	C6 : Solve differential equations by numerical methods
		UNIT-I: Distribution of Primes and Theory of Congruencies	C1: Learn about some important results in the theory of numbers including the prime number theorem, Chinese remainder theorem, Euler's theorem, Wilson's theorem and their consequences
	JRY 3602	UNIT-II: Number Theoretic Functions	C2: Learn about number theoretic functions, modular arithmetic and their applications
	ER THEO ITMDSE	UNIT-III: Primitive Roots	C3: Familiarise with modular arithmetic and find primitive roots of prime and composite numbers
	NUMB	UNIT-IV: Quadratic Reciprocity Law	C4: Know about open problems in number theory, namely, the Goldbach conjecture and Twin-prime conjecture
		UNIT-V: Applications	C5: Apply public crypto systems, in particular, RSA

	UNIT-I: Mathematical Biology and the C	1: Understand basic notions of Bio-
Ω.	modelling process M	lathematics
1C 504	UNIT-II: Activator-Inhibitor system, Insect C	2: Grasp the idea of various bio-
SE	Outbreak Model, Qualitative analysis of ma	athematical models and techniques
D MH	continuous models, bifurcations and limit wh	hich will help them to tacklephysical
H AL	cycles with examples in the context of wo	orld problems
IN W	biological scenario Spatial Models	
CH	UNIT-III: Discrete Models, Case Studies: C.	3 : Understand different discrete
BS	Optimal Exploitation models, Models in mo	odels
щ	Genetics, Stage Structure Models, Age	
	Structure Models	

GENERIC COURSES OUTCOME DEPARTMENT OF MATHEMATICS

	COURSE	UNIT AND TOPIC	UNIT SPECIFIC CO
	NAME		
TER-III	DERN ALGEBRA MGE301	UNIT-I : Definition and examples of groups, examples of abelian and non-abelian groups, the group Zn of integers under addition modulo n, and the group U(n) of units under multiplication modulo n. Cyclic groups from number systems, complex roots of unity, circle group, Normal subgroups: their definition, examples, and characterizations, Quotient groups. Divisor of zeros, Rings, Integral domain, fields.	C1: Understand the concepts of different types of groups, rings, and field.
SEMES	AND MO BSCHMT	UNIT-II : Solution of non-homogeneous system of three linear equations by matrix inversion method. Elementary row and column operations, rank of a matrix, row reduced echelon form and fully reduced normal form.	C2: Understand the basic concepts of group actions and their applications.
	LINEAH	UNIT-III: Vector spaces over reals, simple examples, linear dependence and independence of a finite set of vectors, sub-spaces, definition and examples.	C3: Understand the concepts of vector spaces, sub-spaces, linear dependence and linear independence of a finite set of vectors.
N	ALYSIS 01	UNIT-I: Finite and infinite sets, examples of countable and uncountable sets. Real line, bounded sets, suprema and infima, completeness property of R, Archimedean property of R, intervals. Concept of cluster points and statement of Bolzano-Weierstrass theorem.	C1: Understand about sets in R, sequences, series of functions and infinite series.
1ESTER-I	I REALAN HMTMGE4	UNIT-II: Real Sequence, Bounded sequence, Cauchy convergence criterion for sequences. Cauchy's theorem on limits, order preservation and squeeze theorem, monotone sequences and their convergence.	C2: Understand about sequence of real numbers.
SEN	BASICS IN BSCI	UNIT-III: Infinite series. Cauchy convergence criterion for series, positive term series, geometric series, comparison test, convergence of p-series, Root test, Ratio test, alternating series, Leibnitz's test (Tests of Convergence without proof). Definition and examples of absolute and conditional convergence.	C3: Understand about series of real numbers.

	UNIT-IV: Sequences and series of functions, Pointwise	C4: Understand about sequences
	and uniform convergence. Mn-test, M-test, Statementsof	and series of functions.
	the results about uniform convergence and integrability	
	and differentiability of functions, Power series and radius	
	of convergence.	

PROGRAM COURSES OUTCOME DEPARTMENT OF MATHEMATICS

	COURSE	UNIT AND TOPIC	UNIT SPECIFIC CO
SEMESTER-III	BASICS IN ALGEBRA BSCPMTMC301	UNIT-I : Definition and examples of groups, examples of abelian and non-abelian groups, the group Zn of integers under addition modulo n, and the group U(n) of units under multiplication modulo n. Cyclic groups from number systems, complex roots of unity, circle group, Normal subgroups: their definition, examples, and characterizations, Quotient groups. Divisor of zeros, Rings, Integral domain, fields.	C1: Understand the concepts of different types of groups, rings, and field.
		UNIT-II : Solution of non-homogeneous system of three linear equations by matrix inversion method. Elementary row and column operations, rank of a matrix, row reduced echelon form and fully reduced normal form.	C2: Understand the basic concepts of group actions and their applications.
		UNIT-III: Vector spaces over reals, simple examples, linear dependence and independence of a finite set of vectors, sub-spaces, definition and examples.	C3: Understand the concepts of vector spaces, sub-spaces, linear dependence and linearindependence of a finite set of vectors.
	MATHEMATICAL LOGIC PMTMSE301	UNIT-I: Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, contra positive and inverse propositions and precedence of logical operators. Propositional equivalence: Logical equivalences. Predicates and quantifiers: Introduction, Quantifiers, Binding variables and Negations	C1: Understand about different propositions of logic.
	SETS AND BSCI	UNIT-II: Sets, subsets, Set operations and the laws of set theory and Venn diagrams. Examples of finite and infinitesets. Finite sets and counting principle. Empty set, properties of empty set. Standard set operations. Classes of sets. Power set of a set.	C2: Understand about truth table, logical operators.

		UNIT-III: Difference and Symmetric difference of two sets. Set identities, generalized union and intersections. Relation: Product set. Composition of relations, Types of relations, Partitions, Equivalence Relations with example of congruence modulo relation. Partial ordering relations, n- ary relations	C3: Understand about various operations and relations related to sets.
SEMESTER-IV	INTRODUCTION TO REALANALYSIS BSCPMTMC401	UNIT-I: Finite and infinite sets, examples of countable and uncountable sets. Real line, bounded sets, suprema and infima, completeness property of R, Archimedean property of R, intervals. Concept of cluster points and statement of Bolzano-Weierstrass theorem.	C1: Understand about sets in R, sequences, series of functions and infinite series.
		UNIT-II: Real Sequence, Bounded sequence, Cauchy convergence criterion for sequences. Cauchy's theorem on limits, order preservation and squeeze theorem, monotone sequences and their convergence.	C2: Understand about sequence of real numbers.
		UNIT-III: Infinite series. Cauchy convergence criterion for series, positive term series, geometric series, comparison test, convergence of p-series, Root test, Ratio test, alternating series, Leibnitz's test (Tests of Convergence without proof). Definition and examples of absolute and conditional convergence.	C3: Understand about series of real numbers.
		UNIT-IV: Sequences and series of functions, Pointwise and uniform convergence. Mn-test, M-test, Statementsof the results about uniform convergence and integrability and differentiability of functions, Power series and radius of convergence.	C4: Understand about sequences and series of functions.
	AN ALGEBRA MTMSE401	UNIT-I: Definition, examples, and basic properties of ordered sets, maps between ordered sets, duality principle, maximal and minimal elements, lattices as ordered sets, complete lattices, lattices as algebraic structures, sublattices, products and homomorphisms. Definition, examples and properties of modular and distributive lattices, Boolean algebras	C1: Understand Boolean algebra and Boolean functions, logic gates, switching circuitsand their applications.
	BOOLE BSCI	UNIT-II: Boolean polynomials, minimal forms of Boolean polynomials, Quinn-McCluskey method, Karnaugh diagrams, switching circuits and minimization of switching circuits using Boolean algebra	C2: Apply a number of proof techniques to theorems in language design.
SEMESTER-V	MECHANICS CPMTMDSE501	UNIT-I: Rectilinear motion, Motion under repulsive force (i) proportional to distance (ii) inversely proportional to square of the distance, Motion under attractive force inversely proportional to square of the distance, Motion under gravitational acceleration.	C1: Understand motion in a straight line.
		UNIT-II: Simple harmonic motion, Damped oscillation, Forced and Damped oscillation,Elastic string and spiral string, Hook's law, Particle attached to a horizontal elastic string, Particle attached to a vertical elastic string.	C2: Understand SHM
	BS	Motion under forces varying as distance from a fixed point.	resisting medium.

		UNIT-IV: Central orbit. Kepler's laws of motion. Motion under inverse square law.	C4: Understand Kepler's law of motion and central orbit.
	R THEORY TMSE501	UNIT-I: Division algorithm, Lame'e theorem, Linear Diophantine equation, fundamental theorem of arithmetic, prime counting function, statement of prime number theorem, Goldbach conjecture, binary and decimal representation of integers, linear congruences, complete set of residues	C1: Learn Lame's theorem, linear Diophantine equation, congruences.
	NUMBE	UNIT-II: Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of the Dirichlet product, the Mobious inversion formula, the greatest integer function, Euler's phi-function	C2: Learn Goldbach conjecture, Euler's phi-function.
SEMESTER-VI	LINEAR PROGRAMMING PROBLEMS BSCPMTMDSE601	UNIT-I: Motivation of Linear Programming problem. Statement of L.P.P., Formulation of L.P.P., Slack and Surplus variables. L.P.P. is matrix form. Convex set, Hyperplane, Extreme points, convex Polyhedron, Basic solutions and Basic Feasible Solutions (B.F.S.). Degenerate and Non-degenerate B.F.S.	C1: Analyze and solve linear programming models of real life situations
		UNIT-II: Fundamental Theorem of L.P.P. (Statement only) Reduction of a feasible solution to a B.F.S. Standard form of an L.P.P. Solution by graphical method (for two variables). Simplex method, Simplex algorithm, Artificial variable technique (Big M method).	C2: Provide graphical solution of linear programming problems with two variables, and illustrate the concept of convex set and extreme points
		UNIT-III: Duality in L.P.P.: Concept of duality, Fundamental properties of duality, Fundamental theorems of duality, Duality & Simplex method	C3: Solve linear programming problems using simplex method
		UNIT-IV: Transportation Problem (T.P.): Mathematical formulation, Existence of feasible solution, Loops and their properties, Initial basic feasible solutions (different methods, like North West corner, Row minima, Column minima, Matrix minima & Vogel's Approximation method), Optimal solutions, Degeneracy in T.P., Unbalanced T.P	C4: Learn techniques to solve transportation and assignment problems
	APH THEORY SCPMTMSE601	UNIT-I: Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bipartite graphs isomorphism of graphs	C1: Appreciate the definition and basics of graphs along with types and their examples
		UNIT-II: Eulerian circuits, Eulerian graph, semi- Eulerian graph and theorems, Hamiltonian cycles and theorems.Representation of a graph by a matrix, the adjacency matrix, incidence matrix, weighted graph	C2: Understand the Eulerian circuits, Eulerian graphs, Hamiltonian cycles, representation of a graph by matrix
	GI BK	UNIT-III: Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Dijkstra's algorithm, Warshall algorithm	C3: Relate the graph theory to the real-world problems