ASANSOL GIRLS' COLLEGE

Department of Physics

Programme Specific Outcome (PSO) and Course Outcome (CO)

Programme Specific Outcome (PSO):

The Programme enables the students

PSO1: To acquire basic knowledge in physics, including the major premises of classical mechanics, quantum mechanics, electromagnetic theory, electronics, optics, special theory of relativity and modern physics.

PSO2: To analyze physical problems and develop correct solutions using natural laws.

PSO3: To design and conduct experiments demonstrating their understanding of the scientific method and processes.

PSO4: To discover the concepts of physics in other disciplines such as mathematics, computer science, engineering, and chemistry.

PSO5: To realize and develop an understanding of the impact of physics and science on society.

Semester	Module and Topic	Module specific CO
	Module: I a) Vector Calculus b) Mechanics of Single Particle	Students will CO1: Understand vector algebra and vector calculus and apply the concepts in classical mechanics CO2: understand the classical mechanics of single particles within the scope of the Newtonian formulation and apply them to physical systems.
Semester – I (Major) Mechanics & General Properties of Matter	Module: II a) Oscillations b) Gravitation c) System of Particles	CO3: Understand and analyse various aspects of oscillatory motion, including simple harmonic motion properties, energy considerations, damped oscillations, forced oscillations, resonance phenomena, concepts of resonance and quality factors in a driven system and examples of oscillators across different branches of physics CO4: Learn and apply Kepler's laws and Newton's gravitational law to describe the motion of planets and satellites in circular orbit.
Mech	Module: III a) Rigid Body Dynamics b) General Properties of Matter	CO5: Understand rigid body dynamics, including moment of inertia calculations and conservation of rotational energy, and apply these concepts to analyse the dynamics of various rigid bodies. CO6: Study the properties of matter, the response of the classical systems to external forces, and their elastic deformation and its applications and comprehend the dynamics of Fluid and concept of viscosity and surface tension, along with its applications.

Course Outcome (CO)

Semester	Module and Topic	Module specific CO
Semester – II (Major) Electricity and Magnetism	 Module and Topic Module: I a) Electric Field for a pointcharge. b) Electrostatic potential for apoint charge. c) Multipole expansion ofpotential. d) Gauss law in Electrostatics. Module: II a) Concept of Voltage and current Sources. b) Electrostatics in Conductors and Dielectrics. c) DC steady currents. d) Magnetostatics. 	Module specific COStudents willCO1: Understand the fundamentalsof electric charge, Coulomb's law,electric fields, and potentials,including their relations and applyPoisson's and Laplace's equationsto physical problems.CO2: Analyse the electric field andpotential generated by multipoles,including dipoles, and applyGauss's Law to calculate theelectric field for various chargedistributionsCO3: Explain the behaviours ofelectric currents, current density,and conductors (metals andsemiconductors)under theinfluence of electric fields andapply Ohm's Law, Kirchhoff'sLaws, and network theorems toanalyse circuits.CO4: Understand the behaviours ofelectric fields and charges inconductors and dielectrics,understandcapacitorconfigurations, and be able tocalculate the electrostatic energystored in capacitors.CO5: Understand the fundamentalconcepts of magnetic fields,including their relation to electriccurrents, using Ampere's Law andBiot-Savart Law.

Module: III	CO6: Understand magnetic
	intensity, induction, magnetisation,
a) Magnetic materials	susceptibility, and permeability, as
b) Electromagnetic Induction.	well as various types of magnetic
c) AC circuits.	materials, including diamagnetic,
d) Electromagnetic waves.	paramagnetic, and ferromagnetic
	materials.
	CO7: Understand electromagnetic
	induction, including the effects on
	a conducting rod moving within a
	magnetic field and apply Faraday's
	laws of induction and Lenz's Law.
	CO8: Understand the concepts of
	RMS and average values of AC
	signals and analyse the response of
	RL, RC, LC, and LCR circuits
	using the j-operator method.
	CO9: Understand Maxwell's
	equations, including a brief
	reference to Magnetic Monopole
	and an introduction to Gauge
	transformation and understand the
	concept of electromagnetic waves,
	including their propagation,
	transverse nature, and energy
	transport via the Poynting vector.

Semester	Module and Topic	Module specific CO
Semester – III Classical Mechanics and Special Theory of Relativity	Module: I a) Rotational Motion b) Central force Motion Module: II	Students willCO1: Understand the rigid bodyand rotational motion and apply itto physical systems.CO2: Understand central forcemotion dynamics, including thetwo-body problem and Kepler'sLaws.CO3: Understand Lagrangian
	a) Lagrangian Formulation b) Hamiltonian Formulation	cos: Understand Lagrangian mechanics, including concepts like generalised coordinates and conservation principles to analyse the motion of simple systems. CO4: Understand Hamiltonian mechanics, including concepts likePoisson's bracket, Jacobi identity, canonical transformation
	Module: III a) Special Theory of Relativity	CO5: Understand the foundations of the Special Theory of Relativityand its implications for particles moving with velocity close to the value of c (light velocity in vacuum).

Semester	Module and Topic	Module specific CO
Semester – III Thermal Physics I	 Module: I a) Kinetic Theory of Gases. b) Transportation Phenomenon c) Brownian Motion and its applications 	Students will CO1: Obtain a thorough understanding of the kinetic theory of gases, ideal gas laws, and Maxwell's distribution of molecular velocities. CO2: Understand fundamental transport phenomena in gases: viscosity, thermal conduction, and diffusion.
	Module: II c) Real Gases d) Conduction of Heat e) Radiation	CO3: Understand and analyse the behaviour of real gases beyond the ideal gas model. CO4: Gain in-depth knowledge of various heat transfer processes, particularly conduction and radiation.

Semester	Module and Topic	Module specific CO
Semester – III Analog Systems and Applications	Module: I a) Semiconductor Diodes b) Two-terminal Devices and their Applications Module: II a) Bipolar Junction transistors b) Field Effect transistors c) Amplifiers	Students willCO1: understand the principles of semiconductor diodes, doping, P-N junction diode and their characteristics.CO2: analyse two-terminal diode

Semester	Module and Topic	Module specific CO
Semester – IV Electromagnetic Theory	Module: I Electromagnetic Theory	Students will CO1: Analyse the propagation of electromagnetic waves using Maxwell's equations. CO2: Explain the behaviour of electromagnetic waves in various media, including reflection, refraction, and transmission at dielectric interfaces. CO3: apply electromagnetic theory to understand modern-day communication systems such as optical fibres and waveguides.
	Module: II a) Dispersion b) Scattering c) Electro-and Magneto-optic Effects	CO4: apply electromagnetic principles to explain various phenomena like dispersion, scattering, etc.

Semester	Module and Topic	Module specific CO
Semester – IV Wave Optics	Module: I a) Oscillation and wave motion. b) Interference Module: II a) Diffraction b) Polarisation	Students willCO1:Understandthe results of thelinear superposition of two or morecollinear and perpendicular simpleharmonic oscillations and wavemotion.CO2:Understand and analysewave phenomena like interferenceand its applications.CO3:Understand the principles ofdiffraction of light waves,including Fresnel and Fraunhoferclasses.CO4:Gain proficiency in theprinciples ofpolarisation,including different states ofpolarisation,andprinciples of optical activity.

Semester	Module and Topic	Module specific CO
1	Module: I a) Integrated Circuits b) Digital Circuits c) Boolean algebra	Students will CO1:understand integrated circuits (ICs), including active and passive components, discrete components, wafers, and chips. CO2: learn about basic digital gates and binary logic and apply it to real-life problems
Semester – IV Digital Systems and Applications	Module: II d) Data processing circuits e) Circuits f) Computer Organisation	CO3: Analyse and design basic digital circuits using combinational logic (multiplexers, demultiplexers, decoders, encoders) and sequential logic (SR, D, JK flip-flops). CO4: Explain the fundamental components and organisation of a computer system.

Semester	Module and Topic	Module specific CO
Semester – V Quantum Mechanics	Module: I a) Old quantum theory b) Basic quantum mechanics c) Basic postulates of quantum mechanics module: II d) Time dependent and time independent Schrodinger equation e) Simple applications of Quantum Mechanics f) Schrodinger equation in spherical polar coordinates	Students willCO1:Learn about the foundations of the old quantum theory.CO2: Understand and apply the fundamental principles of quantum mechanics.CO3: grasp the fundamental

Semester	Module and Topic	Module specific CO
Semester – V THERMAL PHYSICS II	Module: I a) First Law of Thermodynamics b) Second Law of Thermodynamics c) Thermodynamic Functions	Students will CO1:thoroughly understand the First Law of Thermodynamics and Apply it to various processes. CO2: Comprehend the Second Law of Thermodynamics, reversible and irreversible processes, Carnot's cycle and theorem, entropy and Clausius theorem. CO3: Understand thermodynamic functions such as enthalpy, Helmholtz and Gibbs free energies, Legendre transformations, Maxwell's relations,

Module: II	CO4: Analyse heat engines and
d) Heat Engines	refrigeration cycles based on
e) Refrigerators	thermodynamic principles.
f) Thermodynamics of	CO5:. Understand phase
Reversible cells	transitions, multicomponent
g) Change of State	systems, and the Nernst heat
h) Multicomponent Systems	theorem (third law).
i) Radiation	CO6: Explain radiation properties
	using Kirchhoff's law, blackbody
	radiation, and radiation pressure.
	Explore key radiation laws and
	their implications.

Semester	Module and Topic	Module specific CO
Semester – VI STATISTICAL MECHANICS	Module and Topic Module: I a) Microstates and macrostates b) Classical statistical mechanics mechanics Module: II a) Motivations for quantum statistics b) Quantum statistical mechanics	Module specific COStudents willCO1:comprehend the concepts of microstates and macrostates, equilibrium, the hypothesis of equal a priori probability and
Statistical Mechanic Statistical Mechanic	a) Motivations for quantum statisticsb) Quantum statistical	 monoatomic gases. CO3: Explain the limitations of classical statistics and the need for quantum statistics and derive Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein statistics as the most probable distributions. CO4: Apply Bose-Einstein statistics to explain blackbody

Semester	Module and Topic	Module specific CO
Semester – VI Semester – VI CONDENSED MATTER PHYSICS	Module and Topic Module: I a) Crystal Structure b) Elementary Lattice Dynamics c) Magnetic Properties of Matter Module: II d) Dielectric Properties of Materials e) Elementary band theory f) Superconductivity	Module specific COStudents willCO1:Understand the structure of solids, grasp elementary lattice dynamics, and understand theories of specific heat, such as Einstein's and Debye's theories.CO2: comprehend the magnetic properties of matter, including dia-, para-, ferri-, and ferromagnetic

Course Outcome for GE/Program

Department of Physics

Semester	Module and Topic	Module specific CO
Semester	Module: I a) Vector Calculus b) Mechanics of Single Particle Module: II a) Oscillations	Students willCO1: Understand vector algebraand vector calculus and apply theconcepts in classical mechanicsCO2: understand the classicalmechanics of single particleswithin the scope of the Newtonianformulation and apply them tophysical systems.CO3: Understand and analysevarious aspects of oscillatory
Semester – I Mechanics & General Properties of Matter	b) Gravitation c) System of Particles	motion, including simple harmonic motion properties, energy considerations, damped oscillations, forced oscillations, resonance phenomena,concepts of resonance and quality factors in a driven system and examples of oscillators across different branches of physics CO4: Learn and apply Kepler's laws and Newton's gravitational law to describe the motion of planets and satellites in circular orbit.
Mech	Module: III a) Rigid Body Dynamics b) General Properties of Matter	CO5: Understand rigid body dynamics, including moment of inertia calculations and conservation of rotational energy, and apply these concepts to analyse the dynamics of various rigid bodies. CO6: Study the properties of matter, the response of the classical systems to external forces, and their elastic deformation and its applications and comprehend the dynamics of Fluid and concept of viscosity and surface tension, along with its applications.

Semester	Module and Topic	Module specific CO
Semester – II Electricity and Magnetism	 Module and Topic Module: I Electric Field for a pointcharge. Electrostatic potential for apoint charge. Multipole expansion ofpotential. Gauss law in Electrostatics. Module: II Concept of Voltage and current Sources. Electrostatics in Conductors and Dielectrics. DC steady currents. Magnetostatics. 	Module specific COStudents willCO1: Understand the fundamentalsof electric charge, Coulomb's law,electric fields, and potentials,including their relations and applyPoisson's and Laplace's equationsto physical problems.CO2: Analyse the electric field andpotential generated by multipoles,including dipoles, and applyGauss's Law to calculate theelectric field for various chargedistributionsCO3: Explain the behaviours ofelectric currents, current density,and conductors (metals andsemiconductors) under theinfluence of electric fields andapply Ohm's Law, Kirchhoff'sLaws, and network theorems toanalyse circuits.CO4: Understand the behaviours ofelectric fields and charges inconductors and dielectrics,understand capacitorconfigurations, and be able tocalculate the electrostatic energystored in capacitors.CO5: Understand the fundamentalconcepts of magnetic fields,including their relation to electriccurrents, using Ampere's Law andBiot-Savart Law.

 Module: III	CO6: Understand magnetic
	intensity, induction, magnetisation,
e) Magnetic materials	susceptibility, and permeability, as
f) Electromagnetic Induction.	well as various types of magnetic
g) AC circuits.	materials, including diamagnetic,
h) Electromagnetic waves.	paramagnetic, and ferromagnetic
	materials.
	CO7: Understand electromagnetic
	induction, including the effects on
	a conducting rod moving within a
	magnetic field and apply Faraday's
	laws of induction and Lenz's Law.
	CO8: Understand the concepts of
	RMS and average values of AC
	signals and analyse the response of
	RL, RC, LC, and LCR circuits
	using the j-operator method.
	CO9: Understand Maxwell's
	equations, including a brief
	reference to Magnetic Monopole
	and an introduction to Gauge
	transformation and understand the
	concept of electromagnetic waves,
	including their propagation,
	transverse nature, and energy
	transport via the Poynting vector.

Semester	Module and Topic	Module specific CO
Semester – III Thermal Physics and Statistical Mechanics	Module: I d) Kinetic Theory of Gases. e) Transportation Phenomenon f) Heat Transfer	Students will CO1: obtain a thorough understanding of the kinetic theory of gases, ideal gas laws, and Maxwell's distribution and transport phenomena in gases CO2: Gain in-depth knowledge of various heat transfer processes, particularly conduction and radiation.
	 Module: II j) First Law of Thermodynamics k) Second Law of Thermodynamics l) Thermodynamic functions 	CO3: Thoroughly understand the First Law of Thermodynamics and Apply it to various processes. C4: Comprehend the Second Law of Thermodynamics and various thermodynamics functions.

Semester	Module and Topic	Module specific CO
– IV Dptics	Module: I c) Oscillation and wave motion. d) Interference	Students will CO1:Understandthe results of the linear superposition of two or more collinear and perpendicular simple harmonic oscillations and wave motion. CO2: Understand and analyse wave phenomena like interference and its applications.
Semester Wave and (Module: II c) Diffraction d) Polarisation	CO3: Understand the principles of diffraction of light waves, including Fresnel and Fraunhofer classes. CO4: Gain proficiency in the principles of polarisation, including different states of polarisation, double refraction, andprinciples of optical activity.

Semester	Module and Topic	Module specific CO
Semester – V Modern Physics	Module: I g) Old quantum theory h) Quantum Mechanics	Students will CO1:Learn about the foundations of the old quantum theory. CO2: Understand and apply the fundamental principles of quantum mechanics.
Sen	Module: II i) Nuclear Physics j) Atomic Physics	CO3: Learn about fundamentals of nuclear physics CO4: Understand the fundamentals of atomic physics and apply it to physical problems.

Semester	Module and Topic	Module specific CO
Semester – VI Basic Electronics	 Module: I c) Semiconductor Diodes d) Two-terminal Devices and their Applications e) Bipolar Junction transistors f) Field Effect transistors Module: II d) Amplifiers e) Digital Circuits f) Boolean algebra 	Students willCO1: understand the principles of semiconductor diodes, doping, P-N junction diode and their characteristics.CO2: Understand, analyse and