
## Introduction to Nanomaterials & Nanotechnology

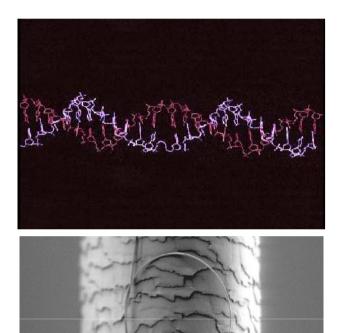
Dr. Soma Gorai Department of Chemistry Asansol Girls' College Asansol

#### Uploaded on 09.08.2019





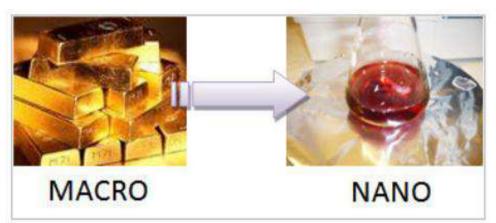



## What is nanotechnology?

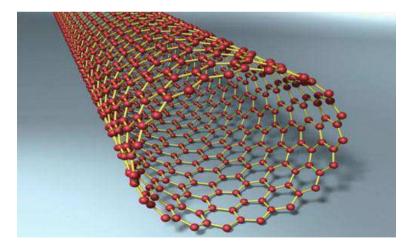
- The word 'nano' derives from the Greek <u>νᾶνος</u> (Latin *nanus*), meaning "dwarf".
- <u>"The science of manipulating atoms and molecules to</u> make new materials and devices".
- An emerging, **interdisciplinary field** involving:
  - Chemistry
  - Physics
  - Biology
  - Engineering
  - Materials Science
  - Computer Science
- Occurs at the 1-100 nanometer range at least in one dimension.

## How big is "nano"?

- It is a millionth of a millimetre or a billionth of a metre i.e. 1nm = 10<sup>-9</sup> m.
- The nanoscale is **1000 times smaller** than the micro meter.
- [1 uM = 1000 nM; 10 lakhs=1 million; 1000 million = 100 crore = 1 billion ]
- Atom: ~0.1 nanometers.
- 10 H atoms placed side by side make 1 nm.


- DNA double-helix: ~2 nm in diameter.
- Human hair: 50,000–100,000 nm in diameter.
- One piece of paper: ~100,000 nanometers thick.




- Girl 1.5m (5ft) tall: ~1500 millions nanometers tall.
- (1ft ≈ 0.3m; 1" ≈ 0.0254m)

## What's so special about the nanoscale?

 Gold is golden at macro and micro scale, but at nanoscale colour and reactivity changes.



- Metallic copper is transparent on the nanoscale.
- Carbon, which is quite soft in its normally occurring form (graphite), becomes incredibly hard when it's tightly packed into a nanoscopic arrangement called a **nanotube**.



Much more stronger than steel of the same diameter.

### **History of Nanoscience:**

 Roman glass workers (4<sup>th</sup> Century) produced the "Lycurgus cup"- made from soda lime glass stained with the Au and Ag nano Particles -looks green (in reflected light) and red (in transmitted light).
 At Medieval Age: The colourful window stained with different coinage metal

#### nanoparticles.

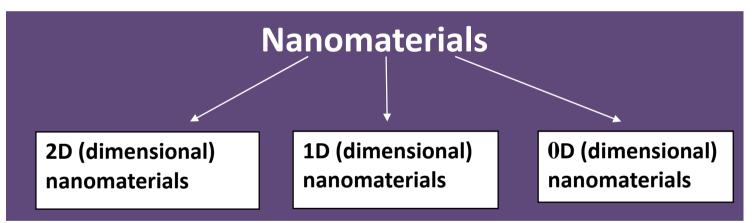
In the 17<sup>th</sup> Century extremely strong but flexible Damascus sword was prepared by using CNTs and iron carbide (Fe<sub>3</sub>C) nanowire. These were extraordinarily strong enough to bend from hill to tip.

Ref. book: An Introduction to Nanomaterials and Nanoscience by A. K. Das & M. Das, C.B.S. Publishers & Distributers Pvt. Ltd., 2017





- Michael Faraday (1857) → explained the colour of origin of glass windows from the presence of metal nanoparticles. He prepared the red coloured gold nanoparticles (preserved in the Royal Institution, London).
- J.C. Maxwell (1867) → proposed the concept of a tiny called 'Maxwell's Demon'.
- G. Mie (1908) → explained the variation of colour glasses with the size of the metal particles dispersed in the glasses.
- R.A. Zsigmondy (first decade of the 20<sup>th</sup> century) → studied on the optical properties of gold and other nanoparticles and won the 1926 Nobel Prize in Chemistry for his work.
- In 1959, American physicist <u>Richard Feynman</u> in a famous speech "*There's plenty of room at the bottom*," gave the idea about nanotechnology; envisioned the possibility and potentiality of nanotechnology.




 Gordon E. Moore (1965), the co-founder of Intel Corporation, made an amazing forecast: the number of transistors on a chip of given area would double in every 1.5 yrs i.e. the dimension of a transistor size decreases by a factor 2 in every 1.5 yrs. His prediction indicated that today's transistors would lie in the nanoregime.

- 1974, Japanese engineering professor Norio
  Taniguchi had named this field
  "nanotechnology."
- In 1980, Dr. K. Eric Drexler first published his groundbreaking book 'Engines of Creation: The Coming Era of Nanotechnology'.
- In 1991, carbon nanotubes were discovered by another Japanese scientist, Sumio lijima.
- In <u>2016</u>, <u>Nobel Prize in Chemistry</u>: Jean-Pierre Sauvage, Sir J. Fraser Stoddart, and Bernard Feringa, for the novel idea of turning molecules into machines.

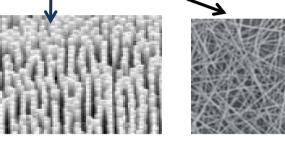
### **Different Types of Nanomaterials:**

- Nanomaterials depending on the number of directions of quantum confinement (QC)\*:
- ➤ 3D-bulk system → all the three dimensions are in the macroscopic range
- > Nanomaterials  $\rightarrow$  at least one dimension is in the nanoregime (1-100nm) to introduce the quantum confinement effect.



➤ 2D (dimensional) nanomaterials → QC occurs in one direction i.e. this direction remain in nanoregime (1-100 nm).

e.g. Ultrathin film, ultrathin layer etc.


\* Ref. book: An Introduction to Nanomaterials and Nanoscience by A. K.

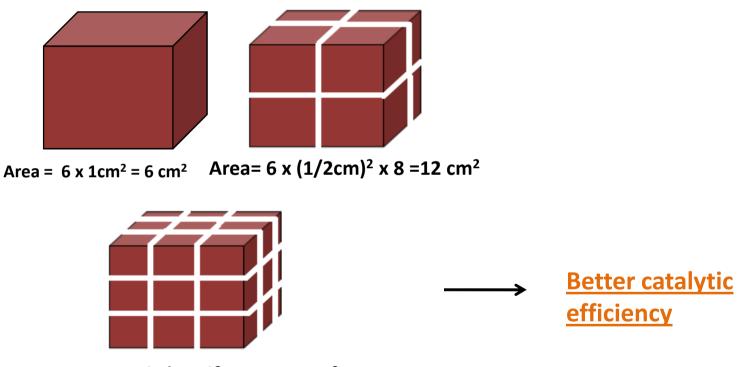
& M. Das, C.B.S. Publishers & Distributers Pvt. Ltd., 2017

### **Different Types of Nanomaterials:**

- ➤ 1D (dimensional) nanomaterials → QC occurs in two direction i.e. these two directions remain in nanoregime (1-100 nm).
  - e.g. nanotubes, nanorods, nanowires, etc.






➢ OD (dimensional) nanomaterials → QC occurs in all the three direction i.e. these three directions remain in nanoregime (1-100 nm).

e.g. quantum dot – nanoparticles, nanocubes etc.



#### Some Reasons for special properties of nanoscale materials

• Increase of Surface area/Volume ratio



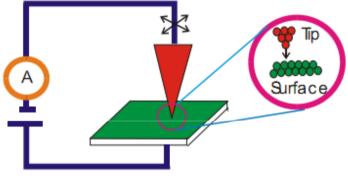
Area= 6 x (1/3cm)<sup>2</sup> x 27 =18 cm<sup>2</sup>

If a bulk material is subdivided into an ensemble of individual nanomaterials, the total volume rer the same, but the **collective surface area is greatly increased**. This is schematically shown in **Figure** 

#### Some Reasons for special properties of nanoscale materials

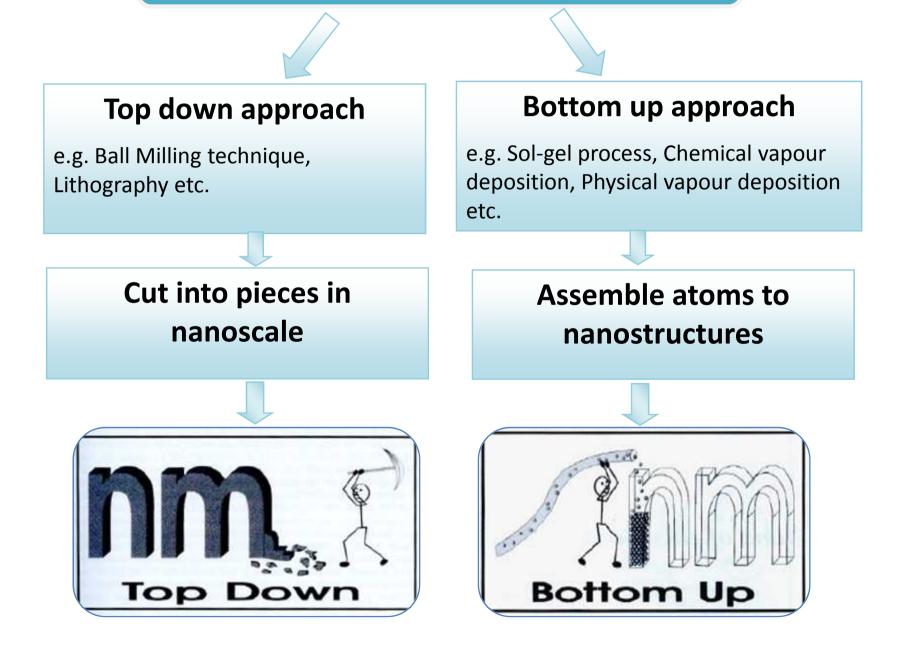
#### • Small size effect (Quantum size effect)

- ✓ The particles are so small that electrons are not free to move about as in bulk gold. As the movement is restricted, the particles react differently with light. → <u>Tunable fluorescent emission</u>
- ✓ Electronic states are quite different from bulk. Discrete energy levels; Quantum confinement effect occurs, increases the energy gap between energy levels leading to metal to semiconductor to insulator transition.
- Decreased imperfections and defects: reason for changing electrical conductivity than bulk matter. etc.
- This more structural perfection in the nanomaterials improves their mechanical properties (increases mechanical strength e.g. hardness, toughness etc.).
- Increased paramagnetism and supermagnetism behaviour

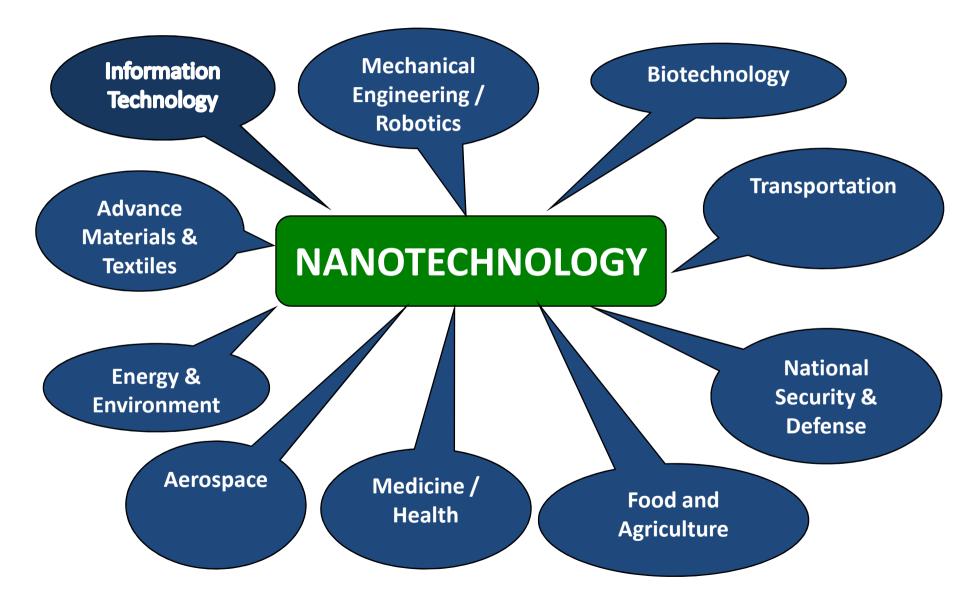

Magnetic Property changes

 Due to smaller size, permeability through the biological membrane increases. ——> <u>Biological Property</u>

### How do we work on the nanoscale?


 Scientists have developed <u>electron</u> <u>microscopes</u> to "see" things on the nanoscale and also manipulate them.

Scanning Tunneling Microscope (STM): Works by sensing the Tunneling current between the sharp tip and the conducting surface when the tip is brought close to the surface.



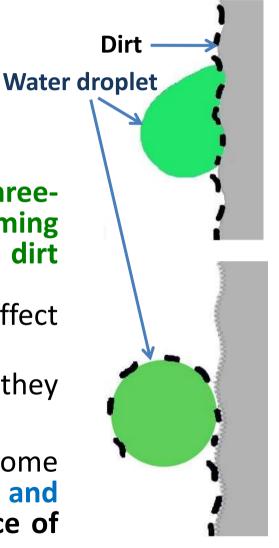

- Atomic Force Microscope (AFMs)
- > Transmission Electron Microscope (TEM)
- Scanning Electron Microscope (SEM)

#### **Fabrication of Nanomaterials**



## What can we use nanotechnology for?




#### **Nano-Textiles**

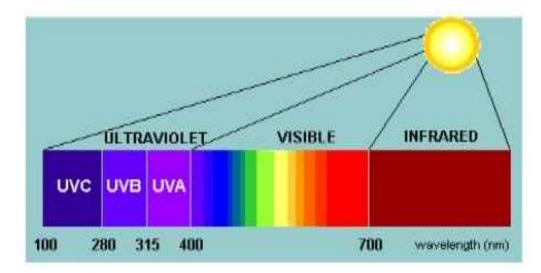
| Application in textiles Nanomaterial used                                                                          |
|--------------------------------------------------------------------------------------------------------------------|
| •Increase durability $\longrightarrow$ Al <sub>2</sub> O <sub>3</sub> , SiO <sub>2</sub> , Carbon nanotubes (CNT), |
| ZnO                                                                                                                |
| •Self-cleaning/ dirt and $\longrightarrow$ CNT, Fluoro acrylate, SiO <sub>2</sub> , TiO <sub>2</sub>               |
| water repellent                                                                                                    |
| •Antibacterial $\longrightarrow$ Ag, TiO <sub>2</sub> , ZnO etc                                                    |
| •Wrinkle resistance $\longrightarrow$ TiO <sub>2</sub> , SiO <sub>2</sub>                                          |
| •Improved staining — Nanoporous hydrocarbon on Nitrogen                                                            |
| / reduce fade coating                                                                                              |
| • <b>UV protection</b> $\longrightarrow$ TiO <sub>2</sub> , ZnO                                                    |
| •Fire proof CNT, Boroxosiloxane, Montmorillonite                                                                   |
| (nano clay), $Sb_3O_2$                                                                                             |
| •Electro conductive and $\longrightarrow$ Carbon black, CNT, Cu, Polypyrrole                                       |
| antistatic                                                                                                         |

### Nano-Textiles

#### Nano products :

- Nano-Tex (wrinkle-resistance, stain resistance),
- Nanosphere (water and soil resistant),
- Nano-Pel (Water-and-oil repellent finishing) etc.
- NanoSphere impregnation involves a threedimensional surface structure with gel-forming additives which repel water and prevent dirt particles from attaching themselves.
   The mechanism is similar to the lotus effect occurring in nature.
- The Nanowhiskers can repel stains because they form a cushion of air around each fiber.
- To overcome the limitations of using resin, some researchers employed nano-titanium dioxide and nano-silica to improve the wrinkle resistance of cotton and silk respectively.




## **Antimicrobial Fabric**

 The silver nanoparticles are toxic to microbes, and so colonies will never form, and clothes using this material will not have odours.



### **Cosmetics**

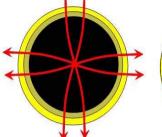
 Zinc oxide and titanium oxide are both employed as opaque sunblocks.





### **Sports materials**

• Polymer nanocomposites barrier film prevents air loss from Tennis balls (InMat), so that tennis ball do not lose its bounce.


•Tennis racquet (<u>Wilson</u>) frames containing silicon dioxide nanoparticles - Increases strength, stability and power.

•Resin containing buckyballs (fullerenes) used to make badminton raquets (Yonex).

•Bicycle (Eston Cycling) parts made with carbon nanotubes- Increases stiffness without weight increase.

•Fishing rods (<u>St Croix Rods</u>) made with a epoxy resin in silica nanoparticles- Increased strength without weight increase.

•Jeremy Wariner used a new shoe designed using nanotechnology by Adidas (in the event men's 400m race) in the 2008 Olympic Games.





Ordinary tennis ball Tennis ball with nanocomposite gas barrier



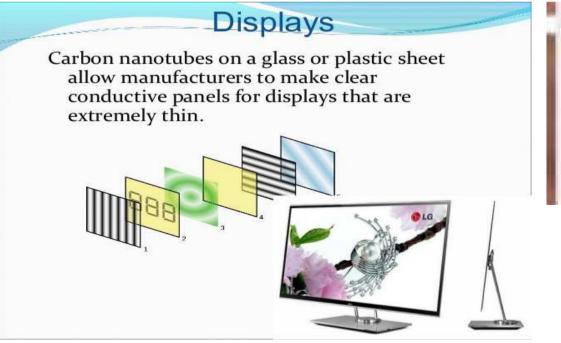
#### **Energy sector**

- Fuel cell catalysis; hydrogen production photocatalysis; solar cells; lithium ion battery etc.
- Newer solar panels now incorporate "nanocrystalline silicon". This increases conversion efficiency.
- Other Examples: Titanium Dioxide Nanoparticles in Dye Solar Cells; Fullerene Derivates as Electron Acceptors in Polymer Solar Cells; Thin-Layer Solar Cells etc.



## Nanomaterials for Aviation Industry

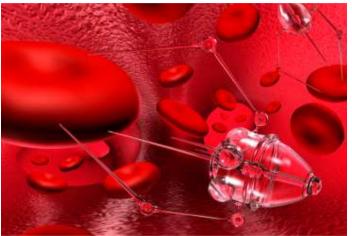
- Properties of Materials required for Airframe Structure: Light Weight; High Strength; High Toughness; Corrosion Resistance; Easy Reparability & Reusability; Less Maintenance & Durability. Nanomaterials can fulfill these requirements.
- Some **CNT based composites** which can be used for airframe structure are - CNT/Epoxy, CNT/Polyimide: wide range of Young's Modulus, High Specific Strength and Thermal Performance.
- Nanoclays reinforced Polymer Composites: Barrier Properties, Thermal and Flame Retardent
- Metal Nps incorporated Composites: extraordinary electrostatic discharge and electromagnetic interference (EMI) shielding properties


• SiC Nanoparticles in alumina Yittria stablized nanozirconia: crack healing, resulting in improved high-temperature, strength and creep resistance.



## Nanotechnology in Electronics

#### **Advantages of Using Nanotechnology in Electronics:**


- Reducing the size of transistors used in integrated circuits & increasing the density of memory chips
- Decreasing the weight and thickness of the screens
- Improving display screens on electronics devices.
- Reducing power consumption.





## Nano-medicine

- There are many possible medical uses of nanotechnology.
- Nano-coatings on hip and joint replacements to prevent rejection.



- Nano-capsules of drugs that will target cancer cells only i.e. nanotechnology may also be useful for developing ways to eradicate cancer cells without harming healthy, neighbouring cells.
- Detection and diagnosis, biomarking and imaging, MRI contrast agents, drug delivery, dental ceramics etc.
- Plasters and bandages can contain nanocrystals of silver, because it is toxic to bacteria.

## Food and Agriculture

- Nano-Pesticides, Nanosensors for soil quality and for plant health monitoring
- Food packaging : Silicate nanoparticles in plastic packaging can provide a barrier to gases (oxygen) or moisture
- UV-protection : Zinc Oxide nanoparticles can block UV rays and provide antibacterial protection when added to plastic packaging



Nano-cellulose food packaging

 Protection from microorganism: Nano-Ag (Silver nano refrigerator) etc.

## Environment

- Pollution control and monitoring :
- Ceria (CeO<sub>2</sub>) nanocrystals doped with Au- nanoparticles can catalyze the oxidation of CO to CO<sub>2</sub> at a much lower temperature- this can be used in automobiles to reduced air pollution.
- ✓ TiO<sub>2</sub> nanoparticle-based photocatalytic degradation of air pollutants in self-cleaning systems
- ✓ Nanocatalysts for more efficient, and better-controlled catalytic converters
- Nanosensors for detection of toxic materials and leaks

Gas separation nanodevices.

## Water treatment and remediation:

Nanosensors for the detection of contaminants and pathogens;

Nanoporous zeolites, nanoporous polymers, and attapulgite clays for water purification;

**Magnetic nanoparticles** for water treatment and remediation;

**TiO<sub>2</sub> nanoparticles** for the **catalytic degradation** of water pollutants.

**Nanomembranes** for **water purification**, desalination, and detoxification.

### Nanotechnology spans other Areas

- Industrial:
- Scratch-Resistant and Dirt-Resistant Paints; optical engineering, Nanoparticle Fillers for Tyres (enhance tyre performance and durability), catalysis, fabrication of cutting tools and hard tip etc.
- Samsung says that "Samsung WM1245A Washing Machine releases over 400 billion silver ions which penetrate deeply into fabrics of any kind and create a coat of sterilizing protection for a maximum of 99.99% disinfection and an added antibacterial effect of up to 30 days after washing".
- Defence and security: Highly sensitive sensors, smart materials etc.
- And many more.....



# FEAR

- Nuclear and atomic bombs can have different dimensions
- Cloning and miniaturization
- Nano medicine- worrying factor! Needed more Research.....

 Acknowledgement: The material has been developed with the help of different text books, journal material and web help. For details contact through author mail (gorai\_soma@rediffmail.com)